Alpha, beta and gamma radiations are all capable of knocking electrons out of atoms, i.e. ionising them, and so are called ionising radiation. Ultra-violet (UV) and X-rays are also ionising.

Visible light, radio waves, microwaves and heat radiation are non-ionising radiations.

Americium-241 is an alpha-emitter used in smoke detectors.

Strontium-90 is a beta-emitter used in forensic analysis of bones.

Heavy radioisotopes decay via a series of stages that form a radioactive series. There are four series in total. E.g. $^{238}_{92}$U (uranium-238) α-decays to $^{234}_{90}$Th (thorium-234) which is a beta-emitter. After a series of stages of successively lighter or less energetic nuclei each series terminates in a stable isotope of lead, except for the $^{237}_{93}$Np (neptunium-237) series which ends in an isotope of bismuth (Bi).
Radioactive Half-Life ($t_{1/2}$)

• Recall that the term half-life refers to the time taken for half the radioactive nuclei in a sample to decay and that the half-life is fixed for any given isotope; carry out half-life calculations:

 • Radioactive decay is a statistical process which is almost entirely independent of external physical factors (such as temperature and pressure).

 • As the particles decay there are fewer radioactive atoms left in a sample - the radioactivity of a given sample diminishes with time.

 • Half-life ($t_{1/2}$): the time taken for half of the radioactive nuclei to decay.

 • The half-life is a characteristic of the particular radioisotope, for example the half-life of iodine-131 is 8.1 days, whilst that of uranium-238 is 4.5 billion years.

\[\text{Decay of iodine-131} \]

\[\text{Decay of uranium-238} \]

• Notice that starting with an initial sample, say 100 g, the radioactivity falls to half after one half-life, then it halves again (to a quarter) after two half-lives, then after three half-lives we have an eight of the original sample left, and so on.

• As time progresses, the rate of decline in radioactivity diminishes (the curve becomes less steep).

• Exponential decay: the mass of radioisotope declines exponentially since the number of atoms decaying depends upon the number of radioactive atoms present.

Calculations involving half-life:

Example 1: Iodine-131 has a half-life of about 8 days. If we start with 8 g of the radioisotope, then how much of it will be left after 24 days?

 Number of half-lives = 24/8 = 3.
 Initial mass: 8 g.
 After one half-life, \(\frac{1}{2} \) mass remaining = \(\frac{8}{2} = 4 \) g.
 After 2 half-lives, \(\frac{1}{4} \) mass remaining = \(\frac{8}{4} = 4/2 = 2 \) g.
 After 3 half-lives, \(\frac{1}{8} \) mass remaining = \(\frac{8}{8} = 2/2 = 1 \) g.

Or use: \(N = N_0 \cdot \exp(-\ln(2)/t_{1/2} \times t) = 8 \times \exp(-0.693/8 \times 24) = 1 \) g.

Where: \(N \equiv \) mass of substance to be found, \(N_0 \equiv \) initial mass, \(\ln(2) \approx 0.693 \), and \(t_{1/2} \) and \(t \) are in the same units (days, years, etc.).
• Understand the use of radioisotopes in the dating of archaeological and geological material

Carbon-14 (14C) dating:

14C is formed in the atmosphere by bombardment of atoms by energetic cosmic rays (mostly protons) causing disintegration of the nuclei and secondary neutron emission. The neutrons collide with 14N to form 14C:

$$^{14}_7\text{N} + n \rightarrow ^{14}_6\text{C} + ^1_1\text{H}$$

Assumes that the relative abundance of carbon isotopes has remained unchanged for the last few thousand years. Plants assimilate this 14C into sugars, oils and proteins by photosynthesis and animals consume the plants and 14C enters the food chain. When an organism dies it ceases to accumulate new 14C and its 14C beta-decays:

$$^{14}_6\text{C} \rightarrow ^{14}_7\text{N} + \beta^- + \nu$$

Thus the ratio of radioactive 14C to stable 12C and 13C isotopes gives us an estimate of the age since death of the sample. 14C has a half-life of about 5730 years and can usefully be used on samples up to 50 thousand years old.

Other radiometric dating methods:

Dating older materials and inorganic materials requires different radioisotope methods. Uranium-lead radioisotope dating is used to date rocks that are billions of years old. For example when the mineral zircon, ZrSiO$_4$, forms, it incorporates some uranium atoms into its crystal structure in place of some of the zirconium atoms, but lead is strongly ejected from the lattice. This method uses the decays: 235U to 207Pb, $t_{1/2} = 700$ million years and 238U to 206Pb, $t_{1/2} = 4.5$ billion years and measures the U/Pb ratios.

Detecting Radiation

Geiger counters are used to detect radiation (α, β and γ). This device consists of a Geiger-Müller tube filled with an inert gas (such as He, Ne or Ar) which conducts a pulse of electricity when ionised by a particle of ionising radiation. The device amplifies the signal to produce a meter-reading and/or audible click.

Scintillation counters also detect ionising radiation (α, β and γ) and use a scintillator which contains a crystal that fluoresces when struck by ionising radiation. These devices are used to detect the gamma-ray photons in PET.