
Bessel Functions
Bessel’s equation:

x2y’’ + xy’ + (x2 – p2)y = 0

Where we have used the notation: y(x)’ = dy/dx, y(x)’’ = d2y/dx2, etc.

Dividing by x2:

y’’ + P(x)y’ + Q(x)y = 0

Where P(x) = 1/x and Q(x) = (x2-p2)/x2.

Therefore: xP(x) = 1 and x2Q(x) = -p2 + x2 and the origin is a singular point (i.e. these 
functions are not well behaved at x = 0 since they can not be defined at x = 0). This singular 
point is a regular singular point, regular since xP(x) and x2Q(x) are analytic at x = 0 (i.e. they 
can be represented by a convergent series at x = 0).

An equation of the general form y’’ + P(x)y’ + Q(x)y = 0 with a regular singular point at x = 0 
can be solved using the Frobenius method of power series substitution. A Frobenius series 
is one of the form:

y  =  xm(a0 + a1x + a2x
2 + …) = a0x

m + a1x
m+1 + a2x

m+2 + …, 

which has an infinite number of terms and m is a number that can be found from the indicial 
equation:

m(m - 1) + mp0 + q0 = 0,

where p0 and q0 are obtained from the power series expansions:

xP(x) = Spnx
n, and x2Q(x) = Sqnx

n,     for n = {0, 1, 2, …}.
∞

n = 0 n = 0

∞

Since xP(x) = 1, p0 = 1 and since x2Q(x) = -p2 + x2, q0 = -p2, therefore the indicial equation is:

m2 - p2 = 0.

The roots of this equation, called the exponents, are m1 = p and m2 = -p. Therefore, there is 
a solution of the form:

y = xpSanx
n =  Sanx

n = p,  a0 ≠ 0 and the power series, Sanx
n converges for 

all x.

Using this power series expansion for y, the first differential of y becomes:

y’ = S(n+p)anx
n+p-1,

and the second differivative becomes:

y’’ = S (n+p-1)(n+p)anx
n+p-2.



This gives us the following expressions for Bessel’s equation:

x2y’’ = S (n+p-1)(n+p)anx
n+p,

xy’ = S (n+p)anx
n+p,

x2y = San-2x
n+p,

-p2y = S-p2anx
n+p.

Adding the above series: x2y’’ + xy’ + (x2 – p2)y = 0, and equating to zero the coefficients of 
xn+p for each n:

n: (n+p-1)(n+p)an + (n+p)an + an-2 – p2an = 0.

n=0: (p-1)pa0 + pa0 + a-2 – p2a0 = 0,      a-2 = 0.

n=1: p(1+p)a1 + (1+p)a1 + a-1 – p2a1 = 0,

=> pa1 + p2a1 + a1 + pa1 + a-1 –p2a1 = 0,

=> (2p+1)a1 = -a-1 = 0,

=> a1 = -a-1/(2p+1) = 0.

n=2: (1+p)(2+p)a2 + (2+p)a2 + a0 – p2a2 = 0,

=> 2a2 + 3pa2 + p2a2 + 2a2 + pa2 – p2a2 = -a0,

=> a2(4+4p) = -a0,

=> a2 = -a0/(n(2p+n).

The following general pattern formula emerges for the coefficients:

-an-2

n(2p+n)
an =

a0 ≠ 0 but is otherwise arbitrary, a-1 = 0, a1 = 0, all the odd terms equal zero. 
Applying the formula for an:

-a0

2(2p+2)
a2 =a0, ,

-a2

4(2p+4)
a4 =

a0

2.4(2p+2)(2p+4)
= ,

-a4

6(2p+6)

a0

2.4.6(2p+2)(2p+4)(2p+6)
=a6 = , …



Solution:

y = aox
p(1  – x2/[22(p+1)]  +  x4/[242!(p+1)(p+2)]  – x6/[263!(p+1)(p+2)(p+3)]  +  …)

=  aox
pS(-1)n

∞

n = 0
22nn!(p+1)…(p+n)

x2n .

The Bessel function of the first kind of prder p, Jp(x) is found by putting a0 = (1/2)pp! :

Jp(x)  = xp

2pp!

∞

n = 0
S (-1)n x2n

22nn!(p+1)…(p+n)

Which simplifies to:

Jp(x)  = 
∞

n = 0
S (-1)n (x/2)2n+p

n!(p+n)!

This function is plotted below for p = 1 (left) and p = 0 (right):

These functions have the appearance of damped sine and cosine functions. Bessel 
functions have numerous applications in physics and maths. Many applications involving 
damped waves or oscillations make use of the Bessel functions. For example, consider 
J0(x), the intensity of light that undergoes Fraunhofer diffraction through a narrow circular 
aperture, as seen on a screen, is given by:

I = I0
2J1(x)

x

2

where I0 is the intensity of the incident (non-
diffracted) light beam.



This intensity function is plotted below:

Plotting this function in 2D (using plane polar coordinates) gives us the pattern of light 
diffracted through a small circular aperture and projected onto a screen:

Notice that what we see is the central beam of light at incident intensity (I0) in the centre of 
the image and a series of concentric diffraction rings fading in intensity away from the 
central beam. This function was plotted in greyscale (left) and inverse greyscale (right) 
using a Windows application written in VC#. It uses the first 40 or so terms of the Bessel 
function series. However, even with 40 (or 100) terms the solution diverges at large values 
of x (that is for large radial distance, r,  from the centre) but gives us four rings. More exact 
algorithms are available (e.g. the VC# extended maths calss available at: 

http://www.codeproject.com/KB/cs/SpecialFunction.aspx ).

This more exact algorithm will give up to 6 rings before the rings fade from view in 
greyscale.


