Solutions to Schrodinger's eqguation for
spherical potential wells:

Modelling the Atomic Nucleus

and the H atom electron




1. Modelling the Atomic Nucleus

Using a spherical rectangular potential well
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We begin by using the time-independent Schrodinger wave equation (TISWE):

0 0 0 2M
+ + + E-V(r)ly =0
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Where:

M = nucleon mass, E = total energy of nucleon (= 0 at nuclear surface)
V(r) is the finite spherical rectangular well potential function:

V(r)=0forrzR

V(r)=-V,forr<R
In spherical polars (changing the Laplacian operator):
X = rsindsing, y = rsindsing, z = rcoso
The TISWE becomes:
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Separation of variables gives:

w(r.0,4) = R(r)Y(0.9)

gives :
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dar* r dr r°00 r 00 r’sin®0 0¢°
(multiply by r?/RY) :
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Where we have set each side equal to a constant which we have designated I(I+1)
for later convenience.
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Separating Y further by variables gives:

Y(6,9) = 0(0)D(9)

gives (in equation 2)
1| d°e de 1do

— | O ——+Dcotd—+I(l +1) | = - ~=m
00| do do ® d¢
where we have set each side equal to a constant designated m*
1 d°® —_m? . L
o d¢2 (3, m is zero or a positive integer)
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Equation 3 is for the familiar harmonic oscillator whose solution is:

D(¢) = Ae'™*®) = A(cos(m¢ + B) +isin(m¢ + B))



The solution to equation 4:
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Change of variable, let u = cos6, gives:

du/dO = —sing
d?u/d@* = —coso

Chain rule :

d do d

du  dudg

4 _dud 0
do do du du
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—cos@d—®—sin9id—®:—cosed—®+sin261d—®
du do du du du du

gives

d°® d°® de
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Substituting in d/d@ and d*/d6? in terms of u :
2 2
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do do sin“ 6

gives
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Considering the simplest case where m = 0, gives:

—2u—+1(1+1)® =0

d’® de
(1_'u2)d,u2 du

This is Legendre’s equation!

This can be solved by power series solution. The solutions are Legendre
polynomials, P(u) = P,(cos®), the first few of which are:

P,(cos@) =1
P,(cos @) = cos 6

P,(cos0) = %(3 cos’ 0 —1)
P,(cos0) = % (5cos’® @ —3cos6)

P,(cos@) = é(35 cos* 0 —30cos’ 6 + 3)



For the general case, including m # O, and as long as |m| < I, a solution which
remains finite for all values of u is:

m|
R () = (- 1" R

where PM(u) is the associated Legendre function.

The associated Legendre function multiplied by the solution to equation 3 for ¢,
and normalised, gives the spherical harmonics which are solutions to Y(0,¢) =

O0)D(4):

21 +1 (I —m)!
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Associated Legendre Functions with argument cos

P’(cosf) =1
P°(cos0) = cos @
P’(cos®) = —sin 0

P, (cos0) = % (3cos® 0 —1)

P, (cos@) = —3sin 6 cos O
P/ (cosd) = 3sin” @

P, (cos0) = % cos9(5cos” 6 —3)

P, (cos6) = —g (5cos® 0 —1)sin

P/ (cos ) =15cos@sin® 0
P’(cos ) = -15sin° 6



Spherical Harmonics
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Returning to the radial equation (1):

rdR 2rdR 2Mr?
E-V(N|=I1(+1
R dr? Rdr h? | (0]=10+1)

We introduce the wave number:

k? =[E -V (r)]2M/#?

and change the variable to p = kr and replace R by V(n/2kr)R'
dp/dr =k, r = p/k

chainrule :

dR _dR dp kd_R
dr dp dr do

d°R d (dR , d {dR , d°R
~=k—| —|=k"— =k >
dr dr dp dp dp dp



gives
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with
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Substituting in the new expressions for our differential operators into:
p° d°R L 2P dR
R dp° R dp
gives

2 3 \/; _5/2 ’ \/; _3/2 dR, \/7 1/2 d R,
— | — R —
P (4 2" 2
4 210(__\/7 —3/2 ' \/7 ~1/2 dR j B I(I -I—l))\/; —1/2Rr
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gives
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gives

d*R’ dR' 1
2 + R +(p* - 1(1+1)p™°R’
0p? pdp 1 (o =11 +1)p
since

(I+1j2 :(I+1J(I+1jzlz+l+l:I(I+1)+1
2 2 2 4 4

we have

2p! ' 2
pzdr\;+de+ pz—(|+1j R'-0
dp do

Jo,

which is Bessel’'s equation!



Solutions to Bessel's equation:
2D/ ' 2
p° d Fi +de + pz—(|+ij R'-0
dop dp 2

for half an odd integer, J,,.,, are:

R(r) = j, (kr) = \/% J1.ya (k)

which are spherical Bessel functions, the first few of which are:

. 1 .
kr) = —sin kr
Jo (kr) -

: 1 . 1
J,(kr) = = SINKr ——cos kr
(kr) Kr
Higher order solutions can be found from the recurrence formula:
21 +1 .

j|+1(kr) — Ji (kr) — jl—l(kr)

Kr



Enerqy Eigenvalues

Consider the first solution for | = O:

R(r) = o) = 2
This must be zero at the nuclear surface (boundary condition) requiring :
sinkR,,.

kR,

wherer =R, . IS the nuclear radius
The smallest value of k satisfying this condition s :

kR nuc k10 Rnuc =7
The next smallestis (I still zero) :
kZORnuc = 27[
Where we have introduced two quantum umbers,v and | :
h2k?
4 —TE" -V (r)]=E
oM [E, -V(NI=E,

Gives the kinetic energy of each eigenfunction designated by E with :
v =123,..



Evaluation of the model

If we construct a nucleus by assuming that neutrons and protons can
populate the same set of energy levels (requiring that no two neutrons or
protons can have the same set of quantum numbers and introducing nucleon
spin with two possible values: +%2 and —-%2) we predict the first few magic
numbers, corresponding to fully occupied energy levels (v): 2, 8 and 20.
However, it fails to accurately predict the higher magic numbers given by the
shell model.

Our rectangular spherical potential, in which the potential abruptly changes at
the nuclear surface, is inaccurate. A more realistic potential would include a
more gradual change in potential at the well edge (such as by using the
Woods-Saxon potential). We also need to account for fine structure by
introducing spin-orbit coupling.

the introduction of spin-orbit coupling accurately predicts all the magic
numbers (at least up to 184). The shape of the well (flatness of the well
bottom and the steepness of its sides) affects the exact energy levels, but not
their order (again we reserve the possibility of differences for very high magic
numbers).



2. Modelling the Hydrogen Atom

Using a Coulomb Potential Well




The Coulomb potential is a central (spherically symmetric) potential and the

angular part of the wave functions are the same as for any other central potential,
namely the spherical harmonics.

However, the radial wavefunction is quite different from that for the spherical
rectangular well.

The Coulomb potential V

> [




r dR 2rdR 2Mr?

T e [E-V(n]=10+1)

Change of variable : let G(r) =rR(r) :

LR = R(r) + 1 T
ddGZ(r) d (R(r))__[R() di(r)}
I

dR dR d2|’ dzr dR
r—2 = 2 2_

Gives ;

r’ d’G  2Mr?

E-V(ID]-10+D=0
Gdl’2+h2[ (H]-1(1+1)
with

2 2

V(r) = —e—,(in cgs units), or :V(r) = — €
r A,

, (in Sl units)



This gives :
2 2 2
d’G 2M {E+e (I + D)7 }G:o

_|_ —_—
dr®  h° r 2Mr?

which is equivalent to :

2 2 2 2
_h d2+l(l+l)2h e G- EG
2M dr 2Mr r

Using the natural units :

p = T , where a, Is the Bohr radius
aO
E
E=—
ER
we have
hz
=a,0 = P

Me?



Me*

E=Eze= 2 &
which gives :
4 2 4 2 4
_Me2 d M2 2I(I+1)—Me 2G:Mez
2h° dp? 2h s, B’ 2
l.e.
2
B d2+|(|t1)—ngeG
do p p
gives :
2
_g%6 — +V,G =G
- dp?
where the effective potential is (in natural units) :
I I+1 2
Veff (,0) - ( ) o
Jo,
or,inergs:
(1 +1) e’
Veff (,0) — ( )

OMr2  r




Where the first term on the RHS is the centrifugal potential, |(I+1)/2Mr?,
and the second term is the coulomb energy, -e2/r.

Let’s consider limiting cases:

for p — oo, the Coulomb energy — 0 and
(1 +1)/2Mr? > 0

which gives :

d°G N
dp? -
For bound states E <0andso-¢ > 0,50 :
d°G
dp?
An acceptable solution to this equation is :

G(p) ~e™

where g = -b*,b >0

As can be seen by substituting this solution back into the DE :

-G

+eG =0

46 _ pewr
do
d°G =b%™ = -G

2

do



At the other extreme, when p — 0 we have:

d°G Il +1
2 ~ ( 2 )G
do P
An acceptable solution of whichis:
G(p) ~ p™
9 L a+p
dp
d°G 1(1+1) ;4

2

S10+Dp =20 p
Jo,

Therefore, we expect the solution to be of the form :

G(,O) - p|+le—bp
The general solution is expected to be this solution multiplied by a polynomial :

Imax

G(p) = e ™y (-1'c,p!

i=0

To see this : consider the wave nature of the bound states with alternating parity.



We shall see shortly that b =1/n, so we have :

imax
l+1,-p/ ' ' l+1,-p/n
Gp) = p """ Y (-D'cp' = p e T (p)
I=0
Now we need to find the values of the coefficients, c;:

If G(p) satisfies :
2 2
— d2+|(|_zl)—£GZEG:>dC3: I(I_zl)_g_g p|+1e—bp.|:
do p P dp p p
then it can be shown that f(p) satisfies :

2

pd”f +2[( +1)—bp]g—f+2[1—b(l +D]f =0
Jo,

as follows :
d—G =(I1+D)p'e™f —bp"Te™f + p'le™ d_f

2

p fo

2

do p

2
d°G :(I(l +1)  2b(1 +1) +szp.+1e_bpf +2(!(! +1) _bjp.+le_bpg_f+

Jo,

p

I+1,-bp d2-|:

do
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Thus :

[I(I +1)  2b(1+1) +b2)f +2[I(I +1) _bj df d?f _[I(I +1) _2_8}

p p p dp dp*® p* P

—

2
d ‘; +2(1(1 +1) —bp)ﬂ+ 2(1+ gp —b(l +1) +pb2)f
dp dp

Jo,
'
2
P d ‘; +2(1(1 +1) —bp)ﬂ+ 2(1—b(l +1))f
dp dp

as required (since & = -b*).



The equation :
d° f

IS very similar to Laguerre’s differential equation into which it can be transformed
by a suitable change of variable. The polynomial solutions we seek, f, will turn out
to be solutions to Laguerre’s equation, called Laguerre poynomials.

Rearranging for later convenience :

d* f _2bpﬂ+2[b(|+1) 1]f =0
do

and substltutlng In f and using the fact that the number of modes

for stationary waves=n-1-1:
n—l-1 n—l-1

Z(1>Cp =2 (D'cip"

d f nZ( 1)'c, (i —1)ip'"?

i=0




—
n__il(-l)"ci (i-Dip"™ +2( +1)n__il(-l)‘ci,0i_1 = anzl_l('l)iciipi +2[b(1+1) _1]ni1('1)icip |

= Z (-1)‘ci [(1=Di+2(1+ 1)i],o“1 = Z (-1)jci [2bi + 2(b(l +1) —1)],oi
Thus :

2, (D'e[(=Di+20+1)jlp"™ =2, (1)'ci[2bi + 2(b(1 +1) ~1)]p!

When =1+ 1, we have:

[1(0+1) +2(1 +1)(i +D)]c. , = —[2bi + 2(b(l +1) —1)]c,

each term must separately equal zero and with 1 = n-1-1, we have :
0=-[2b(n-1-1)+2(b(1+1)-1)]c, ..,

which givesb =1/n

Now we have a formula for the coefficients :

C., 2(n—=1-1-1)

c.  n(i+1@+2+i)




Enerqy eigenvalues

Referring back to our equation for E:

Me*

E=E.¢c=
T 2R?

E

Since we know that € = -b2 and b = 1/n, we have the equation for
the energy eigenvalues, one eigenvalue corresponding to each
orbital:

4
E. = —% (cgs units)
4 2
E . =- |\/|2€ > ° (SI units)
2h°n” \ 4reg,
n=1,2,3,..

The negative sign indicates bound states. (Fine and hyperfine structure
corrections can be applied to E_ for more accuracy).



Normalisation

We still need to determine the coefficient c, which will enable us to determine the other
coefficients by recursion. To determine ¢, we require the integral of the square of the
wavefunction = 1, since this is the probability distribution function of the electron and the

probability of the electron being somewhere in space = 1.
. 2

T I T‘Wmm(f,@,qﬁ)\ r’sinodrdodg =1
r=0 =0 ¢=0

T

| [ [l (o 0,00 o sin oo =1

r=0 6=0 ¢=0
With Y, . normalised :

T 2r
.[ J.hﬁn1(691¢5»2 sin 6kjf*jqb:::1
6=0 ¢=0

we require :

as [ p??| (o) e "dp =1
0

f., (o) isnormalised when c, is, e.g.
forl =0,n=1:

r 2 _
aij[ﬁnzko‘ezpmdpzzl
0



Using the following standard integral :

Trqe“”dr _ ¢
0

+1
aq

We obtain ;

22

2

|Co| Y
0

gives .
| Co |: 2363/2
Note : the sign of c, is unimportant since we square the wavefunction

to obtain the observable probability distribution.



Some radial wavefunctions, R,(r):

3
2
RlO = z(ij e_r/ao
aO
3
2
R,, =2 i 1_L e "2%
24, 24,
3
11 ¥ r |
R, = e 0
B \/§(2an (aoj

2 2
R, =2 L PP ~ e
34, 33, 27a,




Putting it all together

Radial wave functions

I
RnI - an [ﬂj e_r/nao Liljﬁl(ﬂj
na, na

n=123,.. =012, ..,n-1
Note : 2r/na, is the argument of the Laguerre polynomials
The radial normalisation coefficient is given by :
1 2 |[(n=-1=-1)!
N =27 02 (e
0 !

Laguerre polynomials :

p k) ys
Lkp(x)=z(—1>5[fc’)+ jx—

pre —S ) sl
For example :
LS (x) =1

LE(X) =—x+k+1

L% (x) = %[x2 —2(k + 2)x + (k +1)(k + 2)]

L5 (x) = %[— X® +3(k +3)x* = 3(k + 2)(k + 3)x + (k + 1)(k + 2)(k + 3)]



E.Q.
1s orbital :
YO0

1
YNE 3

_ ~-T/ag
ry=e -
'7”100( ) 5 /_71
A4f orbital withm =1:

3
1 1 /1( r 1 /21 . -
. —r/4a, 2 1)
r=——— e — |—sIn@(5cos” @ —1)e
Vaulr) a§/28\/7!(2a0] 8\ ( )




